VU Logo

Quantum Optics Group

at the Institute of Theoretical Physics and Astronomy,
Vilnius University

Recent Publications

Review articles

  1. V. Galitski, G. Juzeliūnas and I. B. Spielman, Artificial gauge fields with ultracold atoms, Physics Today 72(1), 38 (2019); PDF
  2. M. Fleishhauer and G. Juzeliūnas, Slow, Stored and Stationary Light, In: Optics in Our Time, eds. M.D. Al-Amri et al. (Springer, 2016), pp. 359-383; PDF
  3. N. Goldman, G. Juzeliūnas, P. Öhberg and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77 126401 (2014); PDF
  4. J. Dalibard, F. Gerbier, G. Juzeliūnas and P. Öhberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83 1523 (2011); PDF
  5. G. Juzeliūnas and P. Öhberg, Optical Manipulation of Ultracold Atoms, In: Structured Light and its Applications, ed. D. L. Andrews (Elsevier, Amsterdam, 2008), pp. 295-333; PDF
  6. G. Juzeliūnas and D. L. Andrews, Quantum Electrodynamics of Resonance Energy Transfer, In: Advances in Chemical Physics, ed. I. Prigogine and S. A. Rice (Wiley, New York, 2000), v. 112, pp. 357-410; PDF

Journal articles indexed in Web of Science

  1. V. Kasper, G. Juzeliūnas, M. Lewenstein, F. Jendrzejewski and E. Zohar, From the Jaynes-Cummings model to non-Abelian gauge theories: a guided tour for the quantum engineer, New J. Phys. 22, 103027 (2020); PDF
  2. T. Kirova, N. Jia, S. H. Asadpour, J. Qian, G. Juzeliūnas, and H. R. Hamedi, Strongly confined atomic localization by Rydberg coherent population trapping, Opt. Lett. 45, 5440 (2020); PDF
  3. N. Jia, J. Qian, T. Kirova, G. Juzeliūnas and Hamid Reza Hamedi, Ultraprecise Rydberg atomic localization using optical vortices, Opt. Express 28, 36936 (2020); PDF
  4. P. Bienias, S. Subhankar, Y. Wang, T-C. Tsui, F. Jendrzejewski, T. Tiecke, G. Juzeliūnas, L. Jiang, S. L. Rolston, J. V. Porto, and A. V. Gorshkov, Coherent optical nanotweezers for ultracold atoms, Phys. Rev. A 102, 013306 (2020); PDF
  5. H. R. Hamedi, J. Ruseckas, E. Paspalakis, and G. Juzeliūnas, Off-axis optical vortices using double-Raman singlet and doublet light-matter schemes, Phys. Rev. A 101, 063828 (2020); PDF
  6. H. Yin, J. Hu, A.-C. Ji, G. Juzeliūnas, X.-J. Liu, Q. Sun, Localization driven superradiant instability, Phys. Rev. Lett. 124, 113601 (2020); PDF, Supplement
  7. R. P. Anderson, D. Trypogeorgos, A. Valdés-Curiel, Q.-Y. Liang, J. Tao, M. Zhao, T. Andrijauskas, G. Juzeliūnas, and I. B. Spielman, Realization of a deeply subwavelength adiabatic optical lattice, Phys. Rev. Research 2, 013149 (2020); PDF
  8. P. Račkauskas, V. Novičenko, H. Pu and G. Juzeliūnas, Non-Abelian geometric potentials and spin-orbit coupling for periodically driven systems, Phys. Rev. A 100, 063616 (2019); PDF
  9. H. R. Hamedi, E. Paspalakis, G. Žlabys, G. Juzeliūnas and J. Ruseckas, Complete energy conversion between light beams carrying orbital angular momentum using coherent population trapping for a coherently driven double-Λ atom-light-coupling scheme, Phys. Rev. A 100, 023811 (2019); PDF
  10. V. Novičenko and G. Juzeliūnas, Non-Abelian geometric phases in periodically driven systems, Phys. Rev. A 100, 012127 (2019); PDF
  11. B. Shteynas, J. Lee, F. C. Top, J.-R. Li, A. O. Jamison, G. Juzeliūnas and W. Ketterle, How to Dress Radio-Frequency Photons with Tunable Momentum, Phys. Rev. Lett. 123, 033203 (2019); PDF
  12. B. Kim, K.-T. Chen, C.-Y. Hsu, S.-S. Hsiao, Y.-C. Tseng, C.-Y. Lee, S.-L. Liang, Y.-H. Lai, J. Ruseckas, G. Juzeliūnas and Ite A. Yu, Effect of laser-frequency fluctuation on the decay rate of Rydberg coherence, Phys. Rev. A 100, 013815 (2019); PDF
  13. Q. Sun, L. L. Wang, X. J. Liu, G. Juzeliūnas and A. C. Ji, Larkin-Ovchinnikov superfluidity in time-reversal-symmetric bilayer Fermi gases, Phys. Rev. A 99, 043601 (2019); PDF
  14. H. R. Hamedi, J. Ruseckas, E. Paspalakis, and G. Juzeliūnas, Transfer of optical vortices in coherently prepared media, Phys. Rev. A 99, 033812 (2019); PDF
  15. Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliūnas, D. I. Schuster and J. Simon, Probing the Berry Curvature and Fermi Arcs of a Weyl Circuit, Phys. Rev. B 99, 020302 (2019); PDF
  16. H. R. Hamedi, J. Ruseckas and G. Juzeliūnas, Exchange of optical vortices using an electromagnetically-induced-transparency-based four-wave-mixing setup, Phys. Rev. A 98, 013840 (2018); PDF
  17. H. R. Hamedi, V. Kurdiašov, J. Ruseckas and G. Juzeliūnas, Azimuthal modulation of electromagnetically induced transparency using structured light, Opt. Express 26, 338194 (2018); PDF
  18. J. Ruseckas, V. Kudriašov, A. Mekys, T. Andrijauskas, Ite A. Yu, and G. Juzeliūnas, Nonlinear quantum optics for spinor slow light, Phys. Rev. A 98, 013846 (2018); PDF.
  19. T. Andrijauskas, I. B. Spielman and G. Juzeliūnas, Topological lattice using multi-frequency radiation, New J. Phys. 20, 055001 (2018); PDF.
  20. C. F. Liu, G. Juzeliūnas and W. M. Liu, Spin-orbit coupling manipulating composite topological spin textures in atomic-molecular Bose-Einstein condensates, Phys. Rev. A 95, 023624 (2017); PDF.
  21. H. R. Hamedi, J. Ruseckas and G. Juzeliūnas, Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme, J. Phys. B 50, 185401 (2017); PDF.
  22. L.-L. Wang, Q. Sun, W.-M. Liu, G. Juzeliūnas and A.-C. Ji, Fulde-Ferrell-Larkin-Ovchinnikov state to topological superfluidity transition in bilayer spin-orbit-coupled degenerate Fermi gases, Phys. Rev. A 95, 053628 (2017); PDF.
  23. J. Armaitis, J. Ruseckas, and G. Juzeliūnas, Omnidirectional spin Hall effect in a Weyl spin-orbit-coupled atomic gas, Phys. Rev. A 95, 033635 (2017); PDF.
  24. V. Novičenko, E. Anisimovas and G. Juzeliūnas, Floquet analysis of a quantum system with modulated periodic driving, Phys. Rev. A 95, 023615 (2017); PDF.
  25. J. Ruseckas, I. A. Yu, and G. Juzeliūnas, Creation of two-photon states via interactions between Rydberg atoms during light storage, Phys. Rev. A 95, 023807 (2017); PDF.
  26. Q. Sun, J. Hu, L. Wen, W.-M. Liu, G. Juzeliūnas and A.-C. Ji, Ground states of a Bose-Einstein Condensate in a one-dimensional laser-assisted optical lattice, Scientific Reports 6, 37679 (2016); PDF.
  27. E. Anisimovas, M. Račiūnas, C. Sträter, A. Eckardt, I. B. Spielman, G. Juzeliūnas, Semi-synthetic zigzag optical lattice for ultracold bosons, Phys. Rev. A 94, 063632 (2016); PDF.
  28. F. Jendrzejewski, S. Eckel, T. G. Tiecke, G. Juzeliūnas, G. K. Campbell, L. Jiang, A. V. Gorshkov, Subwavelength-width optical tunnel junctions for ultracold atoms, Phys. Rev. A 94, 063422 (2016); PDF.
  29. L. Wen, Q. Sun, Y. Chen, D.-S. Wang, J. Hu, H. Chen, W.-M. Liu, G. Juzeliūnas, B. A. Malomed, A.-C. Ji, Motion of solitons in one-dimensional spin-orbit-coupled Bose-Einstein condensates, Phys. Rev. A 94, 061602 (2016); PDF.
  30. J-H. Zheng, D.-W. Wang and G, Juzeliūnas, Superfluidity enhanced by spin-flip tunnelling in the presence of a magnetic field, Scientific Reports 6, 33320 (2016); PDF.
  31. H. R. Hamedi and G. Juzeliūnas, Phase-sensitive atom localization for closed-loop quantum systems, Phys. Rev. A 94, 013842 (2016); PDF.
  32. S.-W. Su, S.-C. Gou, Q. Sun, L. Wen, W.-M. Liu, A.-C. Ji, J. Ruseckas, and G. Juzeliūnas, Rashba-type spin-orbit coupling in bilayer Bose-Einstein condensates, Phys. Rev. A 93, 053630 (2016); PDF.
  33. E. Anisimovas, G. Žlabys, B. M. Anderson, G. Juzeliūnas and André Eckardt, Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators, Phys. Rev. B 91, 245135 (2015); PDF.
  34. T. Andrijauskas, E. Anisimovas, M. Račiūnas, A. Mekys, V. Kudriašov, I. B. Spielman, and G. Juzeliūnas, Three-level Haldane-like model on a dice optical lattice, Phys. Rev. A 92, 033617 (2015); PDF.
  35. J.-H Zheng, B. Xiong, G. Juzeliūnas, and D.-W. Wang, Topological condensate in an interaction-induced gauge potential, Phys. Rev. A 92, 013604 (2015); PDF.
  36. Q. Sun, L. Wen, W.-M. Liu, G. Juzeliūnas and A.-C. Ji, Tunneling-assisted spin-orbit coupling in bilayer Bose-Einstein condensates, Phys. Rev. A 91, 033619 (2015); PDF.
  37. S.-W. Su, S.-C. Gou, I.-K. Liu, I. B. Spielman, L. Santos, A. Acus, A. Mekys, J. Ruseckas, and G. Juzeliūnas, Position-dependent spin-orbit coupling for ultracold atoms, New J. Phys. 17, 033045 (2015); PDF.
  38. W. Han, G. Juzeliūnas, W. Zhang, and W.-M. Liu, Supersolid with nontrivial topological spin textures in spin-orbit-coupled Bose gases, Phys. Rev. A 91, 013607 (2015); PDF.
  39. H. R. Hamedi ir G. Juzeliūnas, Phase-sensitive Kerr nonlinearity for closed-loop quantum systems, Phys. Rev. A 91, 053823 (2015); PDF.
  40. M.-J. Lee, J. Ruseckas, Ch.-Y. Lee, V. Kudriašov, K.-F. Chang, H.-W. Cho, G. Juzeliūnas and I. A. Yu, Experimental demonstration of spinor slow light, Nat. Commun. 5, 5542 (2014); PDF, SUPL-MATERIAL.
  41. V. Kudriašov, J. Ruseckas, A. Mekys, A. Ekers, N. Bezuglov, and G. Juzeliūnas, Superluminal two-color light in a multiple Raman gain medium, Phys. Rev. A 90, 033827 (2014); PDF.
  42. A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, and M. Lewenstein, Synthetic Gauge Fields in Synthetic Dimensions, Phys. Rev. Lett. 112, 043001 (2014); PDF, SUPL-MATERIAL.
  43. A. Orlof, J. Ruseckas, and I. V. Zozoulenko, Effect of zigzag and armchair edges on the electronic transport in single-layer and bilayer graphene nanoribbons with defects, Phys. Rev. B 88, 125409 (2013); PDF.
  44. B. M. Anderson, I. B. Spielman, and G. Juzeliūnas, Magnetically Generated Spin-Orbit Coupling for Ultracold Atoms, Phys. Rev. Lett. 111, 125301 (2013); PDF.
  45. R. Juršėnas and J. Ruseckas, Bound states of the spin-orbit coupled ultracold atom in a one-dimensional short-range potential, J. Math. Phys. 54, 051901 (2013); PDF.
  46. J. Ruseckas, V. Kudriašov, I. A. Yu, and G. Juzeliūnas, Transfer of orbital angular momentum of light using two-component slow light, Phys. Rev. A 87, 053840 (2013); PDF.
  47. M. J. Edmonds, M. Valiente, G. Juzeliūnas, L. Santos, and P. Öhberg, Simulating an Interacting Gauge Theory with Ultracold Bose Gases, Phys. Rev. Lett. 110, 085301 (2013); PDF.
  48. N. Goldman, E. Anisimovas, F. Gerbier, P. Öhberg, I. B. Spielman, G. Juzeliūnas, Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semi-metals, New J. Phys. 15, 013025 (2013); PDF.
  49. G. Juzeliūnas and I.B. Spielman, Flux lattices reformulated, New J. Phys. 14, 123022 (2012); PDF.
  50. V. Pyragas and G. Juzeliūnas, Stability of linear and nonlinear lambda and tripod systems in the presence of amplitude damping, J. Phys. B: At. Mol. Opt. Phys. 45, 165503 (2012); PDF.
  51. B. M. Anderson, G. Juzeliūnas, V. M. Galitski, and I. B. Spielman, Synthetic 3D Spin-Orbit Coupling, Phys. Rev. Lett. 108, 235301 (2012); PDF, SUPL-MATERIAL1, SUPL-MATERIAL2.
  52. J. Ruseckas, A. Mekys, G. Juzeliūnas, and I. V. Zozoulenko, Electron transmission through graphene monolayer-bilayer junction: An analytical approach, Lithuanian. J. Phys. 52, 70 (2012); PDF.
  53. T. Maceina, G. Juzeliūnas and J. Courtial, Quantifying metarefraction with confocal lenslet arrays, Opt. Comm. 284, 5008 (2011); PDF.
  54. D. L. Campbell, G. Juzeliūnas and I. B. Spielman, Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms, Phys. Rev. A 84, 025602 (2011); PDF.
  55. J. Ruseckas, V. Kudriašov, G. Juzeliūnas, R. G. Unanyan, J. Otterbach, and M. Fleischhauer, Photonic-band-gap properties for two-component slow light, Phys. Rev. A 83, 063811 (2011); PDF.
  56. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Optical vortices of slow light using a tripod scheme, J. Opt. 13, 064013 (2011); PDF.
  57. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Slow polaritons with orbital angular momentum in atomic gases, Phys. Rev. A 83, 023812 (2011); PDF.
  58. J. Ruseckas, G. Juzeliūnas, and I. V. Zozoulenko, Spectrum of π electrons in bilayer graphene nanoribbons and nanotubes: An analytical approach, Phys. Rev. B 83, 035403 (2011); PDF.
  59. R. G. Unanyan, J. Otterbach, M. Fleischhauer, J. Ruseckas, V. Kudriašov, and G. Juzeliūnas, Spinor Slow-Light and Dirac Particles with Variable Mass, Phys. Rev. Lett. 105, 173603 (2010); PDF.
  60. G. Juzeliūnas, J. Ruseckas, and J. Dalibard, Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms, Phys. Rev. A 81, 053403 (2010); PDF.
  61. M. Merkl, G. Juzeliūnas, and P. Öhberg, The non-Abelian bosonic quantum ring, Eur. Phys. J. D 58, 257 (2010); PDF.
  62. J. Ruseckas, A. Mekys, and G. Juzeliūnas, Manipulation of Slow Light with Orbital Angular Momentum in Cold Atomic Gases, Opt. Spektrosc. 108, 438 (2010); PDF.
  63. J. Otterbach, J. Ruseckas, R. G. Unanyan, G. Juzeliūnas, and M. Fleischhauer, Effective Magnetic Fields for Stationary Light, Phys. Rev. Lett. 104, 033903 (2010); PDF.
  64. J. Y. Vaishnav, J. Ruseckas, C. W. Clark, and G. Juzeliūnas, Spin Field Effect Transistors with Ultracold Atoms, Phys. Rev. Lett. 101, 265302 (2008); PDF. Erratum: Phys. Rev. Lett. 103, 129902(E) (2009); PDF
  65. G. Juzeliūnas, J. Ruseckas, A. Jacob, L. Santos, and P. Öhberg, Double and Negative Reflection of Cold Atoms in Non-Abelian Gauge Potentials, Phys. Rev. Lett. 100, 200405 (2008); PDF
  66. M. Cheneau, S. P. Rath, T. Yefsah, K. J. Günter, G. Juzeliūnas and J. Dalibard, Geometric potentials in quantum optics: A semi-classical interpretation, Europhys. Lett. 83, 60001 (2008); PDF
  67. M. Merkl, F. E. Zimmer, G. Juzeliūnas and P. Öhberg, Atomic Zitterbewegung, Europhys. Lett. 83, 54002 (2008); PDF
  68. G. Juzeliūnas, J. Ruseckas, M. Lindberg, L. Santos, and P. Öhberg, Quasirelativistic behavior of cold atoms in light fields, Phys. Rev. A 77, 011802(R) (2008); PDF
  69. A. Jacob, P. Öhberg, G. Juzeliūnas and L. Santos, Landau levels of cold atoms in non-Abelian gauge fields, New J. Phys. 10, 045022 (2008); PDF
  70. J. Kastel, M. Fleischhauer, and G. Juzeliūnas, Local-field effects in radiatively broadened magneto-dielectric media: negative refraction and absorption reduction, Phys. Rev. A 76, 062509 (2007); PDF
  71. A. Jacob, P. Öhberg, G. Juzeliūnas, and L. Santos, Cold atom dynamics in non-Abelian gauge fields, Appl. Phys. B 89, 439 (2007); PDF
  72. J. Ruseckas, G. Juzeliūnas, P. Öhberg, and S. M. Barnett, Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases, Phys. Rev. A 76, 053822 (2007); PDF
  73. G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Formation of solitons in atomic Bose-Einstein condensates by dark-state adiabatic passage, Lithuanian. J. Phys. 47 (3), 351 (2007); PDF
  74. G. Juzeliūnas, J. Ruseckas, P. Öhberg, and M. Fleischhauer, Ligt-induced effective magnetic fields for ultracold atoms in planar geometries, Phys. Rev. A 73, 025602 (2006); PDF
  75. G. Juzeliūnas, Spontaneous emission in absorbing dielectrics: an alternative approach, J. Phys. B: At. Mol. Opt. Phys. 39, S627 (2006); PDF
  76. S. C. Skipsey, M. Al-Amri, M. Babiker, and G. Juzeliūnas, Controllable spontaneous decay at material wedges, Phys. Rev. A 73, 011803(R) (2006); PDF
  77. P. Öhberg, G. Juzeliūnas, J. Ruseckas, and M. Fleischhauer, Filled Landau levels in neutral quantum gases, Phys. Rev. A 72, 053632 (2005); PDF
  78. G. Juzeliūnas, J. Ruseckas, and P. Öhberg, Effective magnetic fields induced by EIT in ultra-cold atomic gases, J. Phys. B: At. Mol. Opt. Phys. 38, 4171 (2005); PDF
  79. J. Ruseckas, G. Juzeliūnas, P. Öhberg, and M. Fleischhauer, Non-Abelian Gauge Potentials for Ultracold Atoms with Degenerate Dark States, Phys. Rev. Lett. 95, 010404 (2005); PDF
  80. G. Juzeliūnas, P. Öhberg, J. Ruseckas, and A. Klein, Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta, Phys. Rev. A 71, 053614 (2005); PDF
  81. S. C. Skipsey, G. Juzeliūnas, M. Al-Amri and M. Babiker, Dipole de-excitation near orthogonal conductor surfaces, Opt. Comm. 254, 262 (2005); PDF
  82. G. Juzeliūnas and P. Öhberg, Creation of an effective magnetic field in ultracold atomic gases using electromagnetically induced transparency, Opt. Spektroscop. 99, 357 (2005); PDF
  83. G. Juzeliūnas and P. Öhberg, Slow light in Degenerate Fermi gases, Phys. Rev. Lett. 93, 033602 (2004); PDF
  84. G. Juzeliūnas, S. C. Skipsey, M. Al-Amri and M. Babiker, Quantum interference at corners, J. Luminescence 110, 181 (2004); PDF
  85. G. Juzeliūnas and P. Öhberg, Slow light in ultra-cold atomic gases, J. Luminescence 110, 185 (2004); PDF
  86. G. Juzeliūnas, L. D. Romero and D. L. Andrews, Eliminating ground-state dipole moments in quantum optics via canonical transformation, Phys. Rev. A 68, 043811 (2003); PDF
  87. G. Juzeliūnas, M. Mašalas, and M. Fleischhauer, Storing and releasing light in a gas of moving atoms, Phys. Rev. A 67, 023809 (2003); PDF
  88. G.Juzeliūnas and H. J. Carmichael, Systematic formulation of slow polaritons in atomic gases, Phys. Rev. A 65, 021601(R) (2002); PDF
  89. G. Juzeliūnas and M. Mašalas, Absorption by cold Fermi atoms in a harmonic trap, Phys. Rev. A 63, 061602(R) (2001); PDF

Other refereed journal articles

  1. G. Juzeliunas and I. B. Spielman, Formation of optical flux lattices for ultra cold atoms, Proc. SPIE 8274, 82740H (2012); PDF
  2. G. Juzeliūnas, J. Ruseckas, D. L. Campbel and I. B. Spielman, Engineering Dresselhaus spin-orbit coupling for cold atoms in a double tripod configuration, Proc. SPIE 7950, 79500M (2011); PDF
  3. G. Juzeliūnas, J. Ruseckas, and P.Öhberg, Effective magnetic fields in ultracold atomic gases, Lithuanian. J. Phys. 45, 191 (2005); PDF