
5440 Vol. 45, No. 19 / 1 October 2020 / Optics Letters Letter

Strongly confined atomic localization by Rydberg
coherent population trapping
Teodora Kirova,1 Ning Jia,2,6 Seyyed Hossein Asadpour,3 Jing Qian,4,7
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We investigate the possibility to attain strongly confined
atomic localization using interacting Rydberg atoms in a
coherent population trapping ladder configuration, where
a standing-wave is used as a coupling field in the second leg
of the ladder. Depending on the degree of compensation for
the Rydberg level energy shift induced by the van der Waals
interaction, by the coupling field detuning, we distinguish
between two antiblockade regimes, i.e., a partial antiblock-
ade (PA) and a full antiblockade. While a periodic pattern of
tightly localized regions can be achieved for both regimes,
the PA allows much faster convergence of spatial confine-
ment, yielding a high-resolution Rydberg state-selective
superlocalization regime for higher-lying Rydberg levels. In
comparison, for lower-lying Rydberg levels, the PA leads to
an anomalous change of spectra linewidth, confirming the
importance of using a stable uppermost state to achieve a
superlocalization regime. © 2020 Optical Society of America

https://doi.org/10.1364/OL.400849

The spatial confinement of atoms with high precision,
e.g., atom localization, has been of continuous interest in
quantum mechanics, while modern tools of quantum optics
have made the actual realization of such experiments possible.
The localization of an atom typically resorts to a measurement of
the population, whether atoms are in the upper or ground state.
Taking account of the parameters of atom–field interaction, as
well as the internal states will lead to a suitable measurement for
higher-precision localization. Current investigations have been
driven by the possibility of practical applications, including
nanolithography [1], laser cooling and trapping [2], and other
areas of atomic physics [3].

A high-resolution localization scheme based on the phe-
nomenon of coherent population trapping (CPT) [4] was
initially proposed [5], where extreme localization of an atom
passing through the standing-wave (SW) field can be achieved,

while the localization resolution can be increased via chang-
ing the relative intensity of probe and SW fields. A variety of
methods have been developed for subwavelength localization of
atoms interacting with the SW fields, for example, via absorp-
tion [6,7], level population [8–10], spontaneously emitted
photons [11], atom diffraction through a measurement induced
grating [12], and using complex energy-level structure [13]. On
the experimental side, using electromagnetically induced trans-
parency (EIT) [14] with a SW coupling laser of sinusoidally
varying intensity, atom and subwavelength atom localizations
were reported by the Yavuz group [15,16] by utilizing the
sensitivity of the atomic dark states.

On the other hand, many problems arise when it comes to
possibilities to achieve localization of Rydberg atoms, due to
the difficulty in confining them in a small region with high
density. The strong van der Waals (vdW) interactions enhance
the nonlinear properties of Rydberg media via the phenomenon
of a dipole blockade [17] and open new opportunities for quan-
tum optics and quantum information applications [18]. The
latter makes the question of experimentally achievable precise
localization of highly excited Rydberg atoms an important one.
When the Rydberg level energy shift caused by the Rydberg–
Rydberg interaction is compensated for by laser detuning, the
phenomenon of so-called antiblockade occurs [19,20], which is
later extensively used in different systems [21–23]. Since in our
study the vdW interaction plays a main role, the corresponding
antiblockade is a vdW-type Rydberg antiblockade, unlike the
case of a dipole–dipole-type antiblockade, which happens when
the dipole–dipole interaction is dominant [24].

In this work, we propose and analyze a theoretical scheme
for the subwavelength Rydberg atom localization by applying
a SW coupling field in a ladder scheme CPT configuration.
We show that the Rydberg level energy shift due to the strong
Rydberg–Rydberg interaction can be partially compensated
for by a corresponding detuning [e.g., in the regime of partial
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antiblockade (PA)], which under certain conditions leads to spa-
tial confinement of the center of mass of the Rydberg atoms with
precision down to subnanometer scale. In order to predict pos-
sible experimental realizations of the localization scheme, our
numerical simulations are performed under realistic parameters
for atomic 87Rb.

We consider an ensemble of interacting Rydberg atoms in
a ladder excitation scheme shown in Fig. 1. Each atom is in
a three-level ladder configuration, where the ground |g 〉 and
middle |m〉 states are coupled by the probe field with Rabi
frequency�p , while the |m〉 and the Rydberg state |r 〉 are con-
nected via the coupling field �s (x ). The probe and coupling
field detunings from the atomic |g 〉→ |m〉 and |m〉→ |r 〉
transitions are denoted by1p and1s , respectively. We will use
the rotating wave approximation and assume a frozen-atom
limit due to the fast operation of the experiments, typically on
the order of µs [25]. The Hamiltonian of the atomic system
then reads H = Ha + Ha f +UvdW, where the constituting
terms Ha =

∑N
j [1pσ

j
mm +1s σ

j
r r ], Ha f =

∑N
j [�pσ

j
mg +

�s σ
j

r m +H.c.], and UvdW =
∑N

i< j
C6

|ri−r j |
6 σ

i
r rσ

j
r r describe,

respectively, the unperturbed atomic dynamics, the atom–field
coupling, and the inter-nuclear vdW interaction. Here the oper-
ator σ j

αβ = |α〉〈β|(α 6= β) describes atomic transitions, and

σ
j
αα = |α〉〈α| is the projection operator. Under the mean-field

approximation, the time evolution of the j th atom operator σ j
αβ

is governed by the equations

σ̇ j
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j
mg + 2γg mσ

j
mm,

σ̇ j
r r = i�s σ

j
mr − i�∗s σ

j
r m,

σ̇ j
g m = (i1p − γg m)σ

j
g m + i�∗p(σ

j
g g − σ

j
mm)+ i�s σ

j
g r ,

σ̇ j
g r = i(1s − s )σ j

g r + i�∗s σ
j

g m − i�∗pσ
j

mr ,

σ̇ j
mr = [i(1s − s −1p)− γg m]σ

j
mr

+ i�∗s (σ
j

mm − σ
j

r r )− i�pσ
j

g r , (1)

where 0m = 2γg m , γmr = γg m , γαβ = (0α + 0β)/2[α, and
β ∈ (g ,m, r )], with 0m� 0r . Here 0m(r ) is the spontaneous

Fig. 1. Schematic representation of an atomic ensemble composed
of numbers of blocked Rydberg superatoms that are coupled by a SW
strong coupling field �s (x ) and a weak traveling wave (TW) probe
field �p . The SW field �s (x ) with a spatial period λ=3/(2 sin φ)
is formed by two propagating fields with an angle 2φ symmetrically
with respect to the ẑ axis. 3 is the wavelength. The probe field �p

propagates along the ẑ direction normal to the SW field. Inset shows a
three-level atom ladder configuration. s describes the vdWs interacting
energy between the interatomic Rydberg states.

decay rate of the state |m(r )〉, while γg m represents the dephas-
ing rate of the |g 〉→ |m〉 atomic transition. The parameter s
describes the energy shifts to the state |r j 〉 induced by the vdW
interaction with other exciting atoms usually situated beyond
the blockade radius Rb [26]. Under the steady-state condition
σ̇αβ(t)≡ 0, we can derive the analytical expression for the
Rydberg level populationσr r , following [27]:

σr r =

Ip(Ip + Is)

(Ip + Is)
2
+ 21p(1s − s)Is + (1s − s)2(γ 2

g m +1
2
p + 2Ip)

,

(2)

where Ip/s = |�p/s |
2 represents the laser intensities. A more rig-

orous equality of intensity that differs by a constant coefficient
2cε0~2/µ2, withµ the electric dipole moment, is ignored with-
out loss of generality. When s = 0 and 1p � γg m , σr r forms
a Lorenzian lineshape with a half-linewidth of single-atom
Rydberg probability:ω= Ip+Is√

γ 2
g m+1

2
p+2Ip

.

An atom in Rydberg state |r 〉i would induce a vdW shift
of level |r 〉 j in another atom separated by distance r , which
effectively translates into a two-photon detuning. The vdW
interaction then blocks the excitation of all the atoms for which
this shift is much larger thanw. The blockade radius can there-

fore be defined as Rb = (C6/ω)
1
6 , where C6 denotes the vdW

coefficient. Only one atom can be excited within the blockade
radius Rb , and the separation r between the two excited atoms
meets the relation r > Rb , so it is reasonable to introduce a
short-range cutoff to the spatial integral at Rb for describing
the vdW interaction given by s =

∫
∞

Rb

C6
r6 σr rρd3r. Here σr rρ

represents the density of excited atoms in the ensemble, ρ is the
atomic density, 1/ρ = 4π R3/3 is the space occupied by a single
atom, and R is the average interatomic spacing.

With the above equations in mind and assuming 1p = 0,
the magnitude of the approximated interaction s becomes s =
ω
ξ
σr r =

Ip (Ip+Is )
2

ξ [(Ip+Is )2+1s 2(γ 2
g m+2Ip )]

√
γ 2

g m+2Ip
, where in order to

obtain σr r , we have used the assumption s = 0. Here
ξ = (R/Rb)

3 is treated as an adjustable parameter controlled
by the atomic density, and a value of ξ ≤ 1 means that the full
blockade is attainable. Let us consider that the coupling field is
a SW in the x̂ direction�s (x )=�s 0sin(kx ), with�s 0 its peak
amplitude and k = 2π sin φ/3 the wavevector, while the probe
field is a traveling wave (TW). The SW can be produced by con-
fining the field in an optical cavity or a Fabry–Perot resonator, or
by using two counter-propagating laser beams.

According to Eq. (2), when the coupling-field detuning
compensates for the vdW shift exactly by1s = s , the expression
for the population simplifies to σr r = Ip/[Ip + Is (x )]. A quick
observation shows that at the nodes of the SW, i.e., kx = nπ
(n ∈ inte g er s ), the Rydberg state population can robustly
persist σr r ≡ 1. Measuring the population in the Rydberg state
results in a tight localization of the ensemble of Rydberg atoms.
With the condition of1s = s , the system evolves into a spatially
dependent dark state |D〉 = (�p |r 〉−�s |g 〉)√

�2
p+�

2
s

, since the decay of the

Rydberg state is negligible. The system adiabatically follows the
dark state as x changes. It is easily seen that at the SW coupling
field nodes, where�s = 0, the dark state reduces to the excited
Rydberg state |r 〉. Thus, the atom is excited to the Rydberg
state via a smooth adiabatic change of |D〉 as �s =�s (x )
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passes through its zero points, and the population of |r 〉 can
be tightly localized. Hence the full antiblockade (FA) case is
treated as 1s ≡ s (x ). We also consider a PA regime in which
only the Rydberg shifts at the field nodes are compensated for
by 1s = s (x = nπ/k). In reality, due to the space depend-
ence of interactions, PA is more feasible. In the PA regime, the
condition 1s = s (x = nπ/k) can be simplified to the form

1s
3ξ(2Ip + γ

2
g m)

3/2
+1s ξ I 2

p

√
2Ip + γ 2

g m − I 3
p = 0. By solv-

ing the cubic equation with respect to 1s and taking only the
real root, we can obtain the value of the coupling field detuning

that satisfies the PA condition, which is: 1s =
21/3W2

−2×31/3ξ2

62/3ξW
Ip√

γ 2
g m+2Ip

, where W = (9ξ 2
+

√
3ξ 4(4ξ 2 + 27))1/3.

In order to explore the real performance of Rydberg
localization via a SW, especially paying attention to the
roles of FA and PA, we place the scheme in 87Rb atoms
where the levels |g 〉, |m〉, |r 〉 are represented by the actual
|5S1/2〉, |5P3/2〉, |60S1/2〉 states [28]. The dissipation is deter-
mined primarily by the decay rate of the excited state |m〉, given
by γg m/2π = 3.025 MHz. While the amplitude of the cou-
pling field Rabi frequency is fixed at �s 0/2π = 80 MHz and
the wavelength 3= 480 nm, the continuous probe field has
a Rabi frequency �p =�s 0/κ , where κ =�s 0/�p describes
the relative ratio of laser amplitudes, and the wavelength of
780 nm. The tunable coefficient κ in our calculations can take
different values; however, in reality, a large κ value requires the
probe beam to be very weak, which results in a significantly long
time for reaching steady state. Due to the limited lifetime of
the Rydberg states, we expect the best localization results to be
achieved for an optimal κ , for which the time for the system to
reach steady state denoted by Ts is 1/10 of the Rydberg states’
lifetime. This leaves sufficient time for a stable localization mea-
surement in the experiment. For example, the |r 〉 = |60S1/2〉

lifetime is 226.86 µs, leading to Ts = 22.68 µs. Note that Ts is
increased for larger κ values, as Ts depends on the absolute val-
ues of the Rabi frequencies. Since Ts is restrained by the Rydberg
level lifetime, it is necessary to find out a best κ value for spatially
localizing the atoms.

For estimating the optimal κ values, we plot in Fig. 2 the
κ-Ts relation by directly solving the equations of motion (1).
For comparison we also introduce a lower-lying Rydberg
level |r 〉 = |30s 1/2〉 with its lifetime about 26.6 µs, giv-
ing Ts = 2.66 µs for a steady localization. A transition of
|5S1/2〉→ |5P1/2〉→ |30S1/2〉 is also possible in practice [29].
In Fig. 2(a), it is clear that in the case of FA, a steady localization
can be ensured by κ = 236 and κ = 80 for Rydberg energy
levels |r 〉 = |60S1/2〉 and |30S1/2〉, respectively, as highlighted
by green dots. Changing the atomic density ξ does not affect
the steady time Ts . The detailed transient responses are shown
in the insets. Shown in Fig. 2(b) for the PA regime, a smaller ξ
(equivalent to a stronger atomic density), increases the time Ts
due to the imperfect energy-shift compensation. Hence, the
optimal κ has to be significantly reduced to reach the same Ts ,
which may cause broadening of localization peaks, as confirmed
by Fig. 4(c).

Next, in order to elucidate the role of the atomic density ξ ,
we study quantitatively the distribution of the blocked energy
s in space. Figure 3(a) illustrates the dependence of 1s on
ξ and for different optimal κ values, as obtained by Fig. 2.
Intuitively,1s decreases with ξ because a bigger atomic density
with R > Rb would cause the interatomic interaction to be

Fig. 2. Relation between the steady-state time Ts and κ for the
Rydberg energy levels |r 〉 = |60S1/2〉 and |30S1/2〉 in the cases of
(a) FA: 1s ≡ s and (b) PA: 1s = s (x = nπ/k). Different ξ values
are comparably displayed for ξ = 0.1 (red solid) and ξ = 1.0 (blue
dotted). Insets show the transient response of population σr r (t) for two
real Rydberg levels, accordingly.

weaker. Moreover, a larger κ is accompanied by a smaller �p ,
lowering the Rydberg-state probability, the same as the Rydberg
shift s . Figures 3(b) and 3(c) show the spatial dependence of the
Rydberg shifted energy s (x ). Except that s (x ) is significantly
decreased if κ is enhanced due to a weaker probe intensity, it
is clear that a smaller ξ(= 0.1) causes a large dip at the local-
ized points x = nπ/k of the spatial profile of s . For the case
with |60S1/2〉 and in the regime of PA, as shown in (c) [blue
dashed curve], the shift s is overcome by a suitable two-photon
detuning 1s at the nodes x = nπ/k, resulting in an effective
two-photon resonance at those positions. Yet, out of the nodes
x 6= nπ/k, s sustains a higher level that cannot be overcome
by1s , causing the steady solution σr r to decrease significantly.
The role of PA is not dominant if ξ is larger (e.g., ξ = 1, red solid
curve), as in this case when the energy s remains almost the same
for all positions x = nπ/k and x 6= nπ/k. On the other hand,
the FA regime can self-consistently compensate for the shifted
energy s (x ) at all spatial positions x , preventing improving the
spectra linewidth by different atomic densities.

Figure 4 presents the simulations of the state-selective locali-
zation protocol by measuring the population distribution of the

(a) (b)

(c)

Fig. 3. (a) Relation of 1s and ξ for values of κ for the Rydberg
energy levels |r 〉 = |60S1/2〉 or |30S1/2〉 determined by Fig. 2.
(b), (c) Relation of the Rydberg shift s and position x for ξ = 0.1
and ξ = 1.0 for the corresponding κ : (b) Rydberg energy level
|r 〉 = |30S1/2〉; (c) Rydberg energy level |r 〉 = |60S1/2〉. γg m is treated
as the frequency unit.
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Rydberg state. Clearly seen is the effect of the two parameters κ
and ξ , as well as the difference between the FA and PA regimes.
Adopting the optimal κ value κ = 236 for |60S1/2〉, as obtained
by Fig. 2, the Rydberg population σr r reaches its maximal value
of 1.0 at the notes of SW, creating a periodic pattern of tightly
localized regions for both PA and FA regimes. While ξ = 1 leads
to matching of the localization lines in both regimes, as shown
in Fig. 4(b) (because the energy s remains almost the same for
all positions), the PA regime improves the spatial confinement
significantly by reducing the spectral linewidth with respect to
the FA when ξ = 0.1 [see Fig. 4(a)].

The reason could be understood as follows. For the case of
FA by using the condition 1s ≡ s (x ) in Eq. (2), we obtain
σ FA

r r = 1/(1+ κ2sin2(kx )), where we have included the spatial
dependence of the coupling field as �s (x )=�s 0sin(kx ). At
the same time, the full width at half maxima (FWHM) of the
localization spectral lines is given by aFA

= arcsin(1/κ)3/π ,
leading to 0.647 nm for the parameters in Fig. 4(a). For the
case of PA, we can make only numerical estimates, giving a
FWHM of 0.56 nm. If considering a lower-lying Rydberg state
|r 〉 = |30s 1/2〉, the localization is accompanied by a broad-
ening of the spectral linewidths, e.g., the localization peak
is not as sharp with respect to the case with the higher-lying
Rydberg state |r 〉 = |60s 1/2〉, as depicted in Figs. 4(c) and
4(d). Moreover, an anomalous behavior of spectra linewidth is
observed now between the FA and PA regimes, i.e., the locali-
zation peaks are wider now for the PA regime, with a FWHM
of σr r as wide as 5.93 nm. This could be due to the wider varia-
tion of interaction energy s around the localization points
[see Fig. 3(b), dotted green line]. Such a comparison confirms
the importance of using a stable uppermost state to achieve a
superlocalization regime.

In conclusion, we study the possibility to achieve strong
localization of interacting Rydberg atoms arranged in a three-
level ladder CPT configuration using a TW probe and SW
coupling fields. We distinguish between two antiblockade
regimes, FA and PA, in which the detuning of the coupling field
compensates for the Rydberg energy shift induced by the vdW
interaction fully or partially, only at the nodes of the SW field.
The sharpest Rydberg state-selective localization is achieved
under the PA condition, when utilizing a higher-lying Rydberg
level can give 100% population at the SW nodes, along with a
FWHM below 1 nm. The spatial confinement is possible also
when considering a lower shorter-lived Rydberg state, which is

Fig. 4. Steady-state Rydberg population as a function of x/3
with parameters: �s 0/2π = 80 MHz, �p =�s 0/κ , γg m/2π =
3.025 MHz, 1p = 0. Red lines, FA (1s ≡ s (x )); blue dashed lines,
PA under the condition 1s = s (x = nπ/k). Parameters ξ and κ are
described in the figure. Insets show a zoom-in around x/3= 0, clearly
showing the difference between the two cases.

accompanied by a spectral line widening and a loss of the locali-
zation sharpness. Our findings are relevant in the emerging field
of subnanometer localization of atoms [30], bringing us one step
closer to novel applications in optical microscopy techniques
in real experiments. Future investigations of the subwavelength
atom localization are planned to involve more complicated level
configurations, and will address the situations when multiple
laser fields carrying orbital angular momentum are applied.
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(1990).
15. J. A. Miles, Z. J. Simmons, and D. D. Yavuz, Phys. Rev. X 3, 031014

(2013).
16. J. A. Miles, D. Das, Z. J. Simmons, and D. D. Yavuz, Phys. Rev. A 92,

033838 (2015).
17. M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I.

Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).
18. M. Saffman, T. G. Walker, and K. Mölmer, Rev. Mod. Phys. 82, 2313

(2010).
19. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Phys. Rev. Lett. 98,

023002 (2007).
20. T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Phys. Rev.

Lett. 104, 013001 (2010).
21. Z. Zuo and K. Nakagawa, Phys. Rev. A 82, 062328 (2010).
22. T. E. Lee, H. Häffner, and M. C. Cross, Phys. Rev. Lett. 108, 023602

(2012).
23. W. Li, C. Ates, and I. Lesanovsky, Phys. Rev. Lett. 110, 213005

(2013).
24. S.-L. Su, “Rydberg antiblockade with resonant dipole-dipole

interactions,” arXiv:2006.06529v2 (2020).
25. A. Browaeys, D. Barredo, and T. Lahaye, J. Phys. B 49, 152001

(2016).
26. D. Tong, S. M. Farooqi, J. Stanojevic, Y. P. Zhang, R. Côté, E. E. Eyler,

and P. L. Gould, Phys. Rev. Lett. 93, 063001 (2004).
27. D. Ma, D. Yu, X.-D. Zhao, and J. Qian, Phys. Rev. A 99, 033826

(2019).
28. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A.

Jones, and C. S. Adams, Phys. Rev. Lett. 105, 193603 (2010).
29. J. Han, T. Vogt, and W. Li, Phys. Rev. A 94, 043806 (2016).
30. C. R. Copeland, J. Geist, C. D. McGray, V. A. Aksyuk, J. A. Liddle,

B. R. Ilic, and S. M. Stavis, Light Sci. Appl. 7, 31 (2018).

https://doi.org/10.1103/PhysRevLett.85.2733
https://doi.org/10.1103/RevModPhys.70.721
https://doi.org/10.1016/0370-1573(94)90066-3
https://doi.org/10.1016/S0079-6638(08)70531-6
https://doi.org/10.1088/0953-4075/39/17/002
https://doi.org/10.1088/1361-6455/aaf5ec
https://doi.org/10.1103/PhysRevA.72.032317
https://doi.org/10.1103/PhysRevA.63.065802
https://doi.org/10.1103/PhysRevA.81.033809
https://doi.org/10.1103/PhysRevA.79.053638
https://doi.org/10.1103/PhysRevA.84.063849
https://doi.org/10.1103/PhysRevLett.78.2038
https://doi.org/10.1103/PhysRevA.94.013842
https://doi.org/10.1103/PhysRevLett.64.1107
https://doi.org/10.1103/PhysRevX.3.031014
https://doi.org/10.1103/PhysRevA.92.033838
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/PhysRevLett.98.023002
https://doi.org/10.1103/PhysRevLett.104.013001
https://doi.org/10.1103/PhysRevLett.104.013001
https://doi.org/10.1103/PhysRevA.82.062328
https://doi.org/10.1103/PhysRevLett.108.023602
https://doi.org/10.1103/PhysRevLett.110.213005
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1103/PhysRevLett.93.063001
https://doi.org/10.1103/PhysRevA.99.033826
https://doi.org/10.1103/PhysRevLett.105.193603
https://doi.org/10.1103/PhysRevA.94.043806
https://doi.org/10.1038/s41377-018-0031-z

